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ABSTRACT: Human biofluids serve as indicators of various physiological states,
and recent advances in molecular profiling technologies hold great potential for
enhancing clinical diagnostics. Leveraging recent developments in laser-based
electric-field molecular fingerprinting, we assess its potential for in vitro diagnostics.
In a proof-of-concept clinical study involving 2533 participants, we conducted
randomized measurement campaigns to spectroscopically profile bulk venous blood
plasma across lung, prostate, breast, and bladder cancer. Employing machine
learning, we detected infrared signatures specific to therapy-naıv̈e cancer states,
distinguishing them from matched control individuals with a cross-validation ROC
AUC of 0.88 for lung cancer and values ranging from 0.68 to 0.69 for the other
three cancer entities. In an independent held-out test data set, designed to reflect different experimental conditions from those used
during model training, we achieved a lung cancer detection ROC AUC of 0.81. Our study demonstrates that electric-field molecular
fingerprinting is a robust technological framework broadly applicable to disease phenotyping under real-world conditions.

■ INTRODUCTION
Various human phenotypes, including diseases, are reflected in
the molecular makeup of biofluids such as blood and its cell-
free media like serum and plasma.1−4 Despite a significant
medical need to complement current invasive and resource-
intensive diagnostic techniques with time- and cost-effective
noninvasive alternatives, a key challenge for modern omics
technologies remains to achieve reproducible and robust
multimolecular detection and interpretation.4−6 Sensitive and
specific analytical methods in the fields of proteomics6−9 and
metabolomics10−13 have led to the discovery of numerous
molecular “biomarker candidates”. However, current omics
techniques are often still limited in the range of molecular
species that they can probe at once. They often require
complex, target-specific preanalytical workflows for sample
preparation.
There is an alternative approach known as molecular

fingerprinting, where phenotype detection is based on patterns
of change across the entire molecular landscape.2,14 If a specific
pattern shows a robust correlation with a particular
physiological state, it may contribute to the detection of a
phenotype. Differences in the patterns of, for example, peptides
and metabolites, reflected in the spectra obtained by mass
spectrometry (MS)9,15 and nuclear magnetic resonance
(NMR)16−18 spectroscopy, have shown potential for disease
detection. Multiomics, which targets multiple molecular
species,4,19 promises to improve diagnostics capabilities.

However, such efforts also require sophisticated methods of
combining different data sets.4,5,19,20 Broadband vibrational
spectroscopy overcomes these challenges by measuring the
entire molecular landscape in a single cross-molecular
fingerprint as demonstrated with Fourier transform infrared
(FTIR) spectroscopy.21−25 Numerous studies using FTIR
spectroscopy have shown the potential of blood-based infrared
spectroscopic molecular fingerprinting for disease detec-
tion.22,25−32

In conventional FTIR spectrometers driven by thermal
radiation sources, minute changes in molecular absorption can
be drowned out by the strong excitation background, limiting
the sensitivity of the instrument.33−35 Laser-based spectro-
scopic approaches such as electric-field molecular finger-
printing (EMF) can overcome this limitation.33,36,37 Here,
the sample is excited by an ultrashort pulse of broadband
infrared light, lasting only tens of femtoseconds. After the
excitation, the molecules emit their resonant vibrational
response over a period extending over hundreds of femto-
seconds to several picoseconds depending on dephasing times.

Received: December 18, 2024
Revised: March 1, 2025
Accepted: March 4, 2025

Articlehttp://pubs.acs.org/journal/acscii

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acscentsci.4c02164

ACS Cent. Sci. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

92
.7

2.
49

.1
49

 o
n 

A
pr

il 
10

, 2
02

5 
at

 1
1:

26
:1

5 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kosmas+V.+Kepesidis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philip+Jacob"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wolfgang+Schweinberger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marinus+Huber"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nico+Feiler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+Fleischmann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+Fleischmann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Trubetskov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Liudmila+Voronina"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacqueline+Aschauer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tarek+Eissa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lea+Gigou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lea+Gigou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrik+Karandus%CC%8Covsky"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ioachim+Pupeza"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+Weigel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Abdallah+Azzeer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christian+G.+Stief"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Chaloupka"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Chaloupka"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Niels+Reinmuth"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ju%CC%88rgen+Behr"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+Kolben"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nadia+Harbeck"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maximilian+Reiser"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ferenc+Krausz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ferenc+Krausz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mihaela+Z%CC%8Cigman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acscentsci.4c02164&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c02164?ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c02164?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c02164?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c02164?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.4c02164?fig=tgr1&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acscentsci.4c02164?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acscii?ref=pdf
https://http://pubs.acs.org/journal/acscii?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Using nonlinear optical wave-mixing, this response can be
captured in a time-resolved manner and temporally separated
from the excitation, thus obtaining infrared electric-field
molecular fingerprints, henceforth briefly: infrared fingerprints
throughout this text. Moreover, no broadband FTIR instru-
ment has demonstrated high-throughput capabilities so far. In
contrast, the bright laser excitation in EMF lends itself to the
high-throughput measurements required for screening appli-
cations.
Here, we report the first proof-of-concept biomedical

application of EMF, demonstrating that the measured
fingerprint patterns robustly acquire disease-specific informa-
tion from liquid blood plasma. Our findings indicate that
patterns in infrared fingerprints can reliably be associated with

physiological states. In this initial evaluation of EMF involving
sample injection automation and its first implementation in a
large-scale clinical study setting, we were able to detect lung
cancer in a minimally invasive manner. To evaluate the
robustness of our method, we utilized an independent held-out
test set designed to emulate more realistic conditions such as
variations in the measurement apparatus, which can occur in
real-world screening scenarios. This independent testing allows
us to assess the generalizability of our technique beyond a
single measurement campaign, revealing that our lung cancer
detection model remains robust under realistic measurement
shifts, maintaining its diagnostic performance and demonstrat-
ing its potential reliability.

Figure 1. Electric-field molecular fingerprinting for in vitro diagnostics. (A) Simplified scheme describing the EMF process for human phenotype
detection using venous blood plasma. Each individual enrolled in the clinical study was medically characterized, had venous blood sampled, and
processed blood plasma sample measured using an EMF instrument resulting in an infrared electric-field molecular fingerprint. (B) Examples of
infrared electric-field molecular fingerprints. The plot displays EMF signals obtained from blood plasma samples of lung cancer patients (magenta)
and control individuals (light blue). The inset zooms into the EMF signals in the delay range from 1050 to 1150 fs, with the signal values amplified
by a factor of 400 along the y-axis. (C) Reproducibility of standardized EMF measurements performed over the measurement campaign. (Left)
Mean (solid line) and standard deviation (shaded region) of standardized infrared electric-field molecular fingerprints for identical quality control
samples (gray) and samples from the Lasers4Life clinical study (cyan), acquired over the seven-month-long measurement campaign. (Right)
Wavenumber-averaged standard deviation values correspond to four time scales plotted for the quality control (gray) and clinical study samples
(cyan). The between-person variability (red) for each time interval was estimated as the square root of the difference between the two variances
represented in cyan and gray. Details on the EMF measurement preprocessing and standardization procedure that led to the results shown here are
provided in the Methods section. Figure S3 provides a comparable reproducibility analysis for spectra obtained using an FTIR spectrometer.
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■ RESULTS
Electric-Field Fingerprinting to Profile Human Blood

Plasma. Infrared vibrational spectroscopy examines the
vibrational response of molecular bonds to optical excitation.
It accesses the frequency, phase, and oscillator strength of the
infrared-active vibrational modes specific to the molecule(s)
under scrutiny, which may facilitate their identification and
quantification.38 Unlike the continuous irradiation of the
sample by an infrared source in FTIR spectroscopy, EMF
employs impulsive excitation with an ultrashort laser pulse,
followed by time-resolved sampling of the infrared electric field
emitted by the sample.33,36 As a result, the coherent molecular
response survives the ultrabrief excitation, and direct measure-

ments of temporal signals free from the excitation source and
its associated noise lead to improved sensitivity.33 For complex
human biofluids, infrared electric fields emitted by different
classes of molecules (e.g., proteins and carbohydrates) add up
coherently to form the sample’s cross-molecular infrared
fingerprint. The present study assesses the potential of EMF
technology as a platform for in vitro blood plasma profiling in a
clinical study, specifically for cancer diagnostics.
Figure 1(A) illustrates the experimental setup, which

includes sample collection, impulsive infrared excitation, and
EMF measurement of human blood plasma. Blood plasma
samples from 2533 individuals were collected as part of the
Lasers4Life clinical study and measured using the EMF

Figure 2. Detailed breakdown of the Lasers4Life clinical study cohort. This figure presents the distribution of 2533 study participants. (A) Pie chart
categorizes participants by cancer status, specific cancer types, and sex. (B) Breakdown of lung cancer patients by stage. (C and C′) Distribution of
key characteristics, including comorbidities and smoking status, within the control group. (D and D′) Distribution of key characteristics, including
comorbidities and smoking status, within the lung cancer group. Additional information on age and BMI distributions by cancer group is provided
in Figure S1.
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instrument described in a previous publication.37 Each EMF
measurement took 90 s and was followed by a cuvette cleaning
step that lasted 2 min, adding up to a total time of 3 min and
30 s for each sample. The 90 s comprises a 40-s-long blank
measurement with pure water in the cuvette, followed by
sample injection and a 40-s-long measurement with the sample
in the cuvette. Each 40-s-long EMF signal measurement was
obtained by averaging 112,000 individual traces. The blank
measurement is used to standardize our infrared fingerprints
(see the Methods) by suppressing fluctuations that arise from
the laser source. The measurement campaign was conducted
over 73 days of operation spanning seven months. This
included a 10-week time gap introduced between measure-
ments performed on the train and test sets to simulate real-
world conditions. The daily time allotted for the clinical study
samples was limited due to the 2-h stabilization period
required by the laser source and the time needed to measure
samples not included in this study. Figure 1(B) displays
infrared fingerprints normalized to their peak values plotted as
a function of delay in femtoseconds, for samples of blood
plasma from a representative set of lung cancer patients and
control individuals, in magenta and light blue, respectively. The
inset displays a magnified view of the EMF signals in the delay
range from 1050 to 1150 fs.
Reproducible measurements are a prerequisite for applying

the experimental approach in a medical diagnostic setting. This
led us to evaluate whether the recently developed EMF
technology, now integrated with semiautomated sample
delivery, is sufficiently robust for cross-comparing fingerprint
information over extended measurement periods as required
for large clinical studies and in future health screening
applications. We began by assessing the stability of the
analytical approach by comparing chemically identical samples.
To this end, we conducted repeated measurements on 1185
aliquots of commercially obtained pooled human blood sera,
which we used as a quality control measure. To realize the
background-free advantage of EMF by separating the resonant
molecular signal from the impulsive excitation, we applied a
time-domain filter to the measured infrared fingerprints as part
of our standardization process, resembling the procedure
outlined previously.39

The left panel in Figure 1(C) displays the mean (solid gray
line) and standard deviation (gray-shaded region) of all 1185
standardized infrared fingerprints of the quality control serum
samples measured throughout the campaign, normalized to the
peak value within the displayed spectral range from 950 to
1375 cm−1, where the spectral amplitude is typically higher
than 50% of the absolute maximum. Details on the EMF
measurement preprocessing and standardization procedure
that led to the results shown in this panel are provided in the
Methods section. The spread in repeated measurements of
these identical samples represents the experimental uncertainty
in our EMF technique due to variations in the automated
sampling procedure, fluctuations in the laser source, and the
EMF detection. To compare this with the biological variability
in blood plasma derived from different individuals of the study,
we display the same measures in cyan for the 2533 plasma
samples collected from participants of the Lasers4Life clinical
study (see the Methods for details on sample selection and
cohort design). The right panel shows the average value of the
standard deviation, calculated over all wavenumbers from 950
to 1375 cm−1. The wavenumber-averaged standard deviation
was calculated for both the quality control (gray) as well as the

Lasers4Life study samples (cyan) for measurements acquired
over time scales of a day, a week, a month, and the entire
measurement campaign, which lasted seven months.
Although the experimental variability in the quality control

measurements increased over the extended period of measure-
ment comparison, the value remained considerably lower than
the variability between different individuals within the study,
underscoring the potential of employing field-resolved spec-
troscopy for large-scale analyses spanning several months. We
estimated the standard deviation corresponding to the
between-person variability in the standardized EMF signals
(red bars) as the square root of the difference between the
variances corresponding to the study individuals and the
quality control samples. This corresponds to the square root of
the difference between the squares of the gray and cyan plots.
Although reproducibility in this initial EMF implementation is
not yet at the level of advanced FTIR spectrometers (see
Figure S3), ongoing developments in EMF instrumentation are
expected to significantly reduce instrument noise (gray bars),
thereby enhancing EMF sensitivity.40

Clinical Study Setting. The capacity of EMF to aid cancer
diagnostics was tested in the multicentric Lasers4Life clinical
study conducted in the Munich area, where the study
participants were divided into case-control group pairs of
therapy-naıv̈e cancer patients (with cancer of either the lung,
prostate, breast, or bladder) and asymptomatic control
individuals. Figure 2 visually represents the cohort statistics.
Panel (A) shows a breakdown into the four different cancer
groups and the group of noncancer control individuals, as well
as based on sex. The set containing all study participants
(patients and reference individuals) was randomly split into
training and test sets. The training set altogether consisted of
2104 individuals, corresponding to approximately 80% of the
total number of participants. The EMF measurements of these
individuals were conducted in a fully randomized manner over
19 weeks. The remaining 20% (429 individuals) constituted
the test set, which was measured in randomized order over 2
weeks, following a 10-week gap that was introduced to ensure
robust testing considering drifts in spectrometer performance.
During this gap period, the EMF measurements of samples
that are not part of the Lasers4Life clinical study cohort were
performed using the instrument. Case-control group pairs were
created and utilized within the training data set to train binary
classification models tailored to target medical questions. To
account for potential confounding factors, statistical matching
based on age and sex was employed.
Throughout the clinical study, venous blood was processed

to plasma according to previously defined standard operating
procedures to minimize preanalytical errors.27 An automated
sample delivery system was applied for transmission mode
spectroscopic measurement. The samples were excited by
broadband (910−1530 cm−1 at −20 dB intensity) mid-infrared
laser pulses with a duration of 60 fs (full width at intensity half-
maximum), and the molecular response was recorded over 40 s
with dual-oscillator electro-optic sampling.37

In the first step, using the training set, we assessed the
feasibility of EMF to distinguish therapy-naıv̈e lung, prostate,
breast, and bladder cancer patients (cases) from age- and sex-
matched asymptomatic control individuals (controls). The
acquired infrared fingerprints were used to train machine
learning models to perform binary classification of the samples
into cancer and non-cancer reference groups. Model training
was performed by applying a logistic regression algorithm to
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standardized infrared fingerprints37,39 of the training set. For
initial performance evaluation, 10-fold cross-validation was
used, repeated 5 times with randomization. The classification
performance was assessed by evaluating the area under the
receiver operating characteristic (ROC) curve (AUC). The
optimized classifiers were then tested on the independent held-
out test data sets (Section 2.4). The test sets were not
statistically matched. Matching in terms of age and sex was
performed only on the disease-specific training data sets to
avoid introducing bias into the classification models.
Due to the high efficiency of lung cancer classification

compared to asymptomatic control individuals (shown in the

following subsections), we extended our analysis to examine
comorbidities and disease progression within the training set.
Figure 2(B) illustrates a distribution of lung cancer stages in
the study. Figures 2(C) and 2(D) show the prevalence of four
chosen conditions, namely kidney disease, type-2 diabetes,
chronic obstructive pulmonary disease (COPD), and high
blood pressure among the group of control individuals and that
of lung cancer patients, respectively, while Figures 2(C′) and
2(D′) display the smoking status of participants in the two
groups.
Electric-Field Fingerprinting Platform for Analyzing

Molecular Signatures of Four Common Cancers. We

Figure 3. Electric-field resolved fingerprinting for in vitro detection of four common cancers. (A) Schematic of the machine learning pipeline used
to generate mean ROC curves, involving binary classification models trained to distinguish cancer cases from nonsymptomatic controls. Model
training was performed using logistic regression within a nested cross-validation framework (see the Methods for details). (B) Mean ROC curves
illustrating the detection performance for each cancer type. Insets display the mean difference in EMF signals between cancer patients and control
individuals (solid line), along with the standard deviation in the EMF signal of the corresponding controls (gray-shaded region). The x-axis
represents the delay, ranging from 500 to 1200 fs. The y-axis scale is identical across all four insets, ensuring direct comparability. Mean test AUC
values from the cross-validation are 0.88 ± 0.04 for lung cancer, 0.68 ± 0.08 for prostate cancer, 0.69 ± 0.09 for breast cancer, and 0.68 ± 0.06 for
bladder cancer. (C) Multiclass classification of different cancer types. Confusion matrices show classification results for lung, breast, and bladder
cancers in a matched female cohort (upper plot) with an overall model accuracy of 0.48 ± 0.11, and for lung, prostate, and bladder cancers in a
matched male cohort (lower plot) with an overall model accuracy of 0.53 ± 0.03. Further details on the demographic characteristics of the matched
case-control designs used in this analysis can be found in Tables S1 and S2.
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evaluated the ability of EMF to detect four cancer entities,
lung, prostate, breast, and bladder cancer, when compared to
age and sex-matched nonsymptomatic control individuals each.
Figure 3(A) outlines the workflow where patient medical
information and fingerprint measurements from the training
data set were applied to train and evaluate logistic regression
models within a nested cross-validation scheme, as detailed in
the Methods section. The corresponding ROC curves for each
cancer type, representing the average ROC calculated through
cross-validation within the training data, are shown (Figure
3(B)). Additionally, the four insets show the mean difference
in the EMF signals obtained from blood plasma samples
between cancer and control groups of individuals. The analysis
indicates a test AUC upon cross-validation of 0.88 ± 0.04 for
lung cancer detection, while AUC values for the other cancer
types are lower and range between 0.68 and 0.69. These AUCs
are closely tied to the effect size, which is the ratio of the
differential signal magnitude caused by the condition to the
spread of the control measurements (as shown in the insets). A
future reduction in instrument noise is expected to increase the
effect size and thus improve classification performance. This
stronger result for lung cancer detection is consistent with the
fact that lung tumors generally grow more rapidly than many
other types of cancer, though growth rates vary widely across
cancer subtypes and organs. Another possible explanation is
that lung tumors may release more metabolic and cellular
products into the bloodstream, given the closer proximity and
exchange with the circulatory system.

To better detect spectroscopic aberrations of lung cancer,
whose aggressive nature underscores the importance of early
detection and timely treatment, we further investigated the
influence of demographic parameters, such as sex, age, and
BMI, on the trained classification models. Our results indicate
that these demographic parameters do not significantly affect
model performance (Figure S2), supporting the robustness of
the approach across different populational substrata. Observed
trends, however, suggest a slightly more efficient detection of
lung cancer in individuals with lower BMI.
To test whether EMF signals are specific to different cancer

entities, we explored the classification of cancer types within a
balanced cohort of cancer patients, excluding control
individuals. We created sex-stratified cohorts, each comprising
three cancer types, with subgroups statistically matched based
on age. Multiclass classification algorithms were then trained to
predict the cancer type within cross-validation. Figure 3(C)
presents the resulting confusion matrices. For the female
cohort, the model achieved an overall accuracy of 0.48 ± 0.11,
while the male cohort achieved an accuracy of 0.53 ± 0.03.
These results are significant, as random chance prediction
would yield an accuracy of only 0.33, underscoring the capacity
of electric-field fingerprints to capture cancer-specific signals.
Testing EMF Performance under Nonidentical Con-

ditions. To ensure the robustness and generalizability of our
machine learning models, it is crucial to perform independent
testing using a held-out test set, validating the performance and
reliability of our models in realistic scenarios. To address this,

Figure 4. Performance of EMF-based models in predicting four common cancers on an independent test set, obtained from a separate
measurement campaign conducted 10 weeks after the original campaign used for model training. (A) Overview of the measurement campaign: The
total population was randomly split into a training set (80%) and an independent held-out test set (20%), with measurements for each set
conducted in two separate campaigns, spaced 10 weeks apart. (B) Receiver operating characteristic (ROC) curves demonstrate the performance of
cancer-specific binary classification models on the independent held-out test sets. Detailed demographic characteristics of these test sets are
provided in Table S1.
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we conducted an independent measurement campaign 10
weeks after the initial experimental measurements were used
for model training. This method surpasses the traditional
approach of reserving a subset of data for testing by providing a
statistically independent test set with data that fall outside the
training distribution, thus offering a more realistic evaluation.
The model’s performance slightly decreased when applied to

the independent test set. For lung cancer, the AUC dropped
from 0.88 to 0.81. Similar declines were observed for the other
three cancer entities, with the most significant drop seen in
breast cancer, where the AUC fell to around 0.5, rendering the
current EMF instrument incapable of detecting breast-cancer-
specific signals in the independent cohort (Figure 4). These
discrepancies are expected due to measurement device drifts
and differences in cohort characteristics. Such variations are
common in real-world scenarios and provide more realistic
performance estimates.
The present work marks the first evidence that EMF signals

of blood plasma can reliably capture signals linked to at least
three types of cancer (lung, prostate, and bladder). Already in
its first implementation, the cancer diagnostic performance

with EMF is comparable to that of FTIR fingerprinting (Table
S9). These promising findings suggest that further techno-
logical improvements, such as expanded spectral coverage and
enhanced stability, could significantly boost EMF’s diagnostic
potential.
Given EMF’s strong performance in lung cancer detection,

the remaining analyses focus on its utility in improving lung
cancer diagnostics, including aspects of cancer progression and
related comorbidities. For comprehensive evaluation, all
further analyses are conducted using the full training data set
with cross-validation, rather than the held-out test set.
Performance of EMF Correlates with Lung Cancer

Staging. To explore the potential of minimally invasive
infrared diagnostics for early stage lung cancer detection, which
could enhance treatment options, we evaluated classification
models across different lung cancer case-control groups
stratified by tumor, node, metastasis (TNM) staging, following
the TNM Classification of Malignant Tumors (Union for
International Cancer Control (UICC)).41 Figure 5(A)
illustrates the difference between EMF signals from lung
cancer patients and control individuals for four case-control

Figure 5. Lung cancer progression (in terms of TNM staging), as reflected by EMF. (A) The mean difference in measured plasma EMF signals
between cancer patients and control individuals (solid line) and the standard deviation in the EMF signal for the control individuals (gray-shaded
region), plotted against the time delay ranging from 500 to 1200 fs for better visibility, stratified by lung cancer stage. (B) Average ROC curves
(from nested cross-validation) for classification models applied to different case-control groups, stratified by the TNM staging of lung cancer cases.
Demographic characteristics of the case-control designs used in this analysis are detailed in Table S3.

Figure 6. Effect of physiological conditions and smoking status on lung cancer detection accuracy using electric-field fingerprinting. Bars represent
cross-validated ROC AUC values for EMF-based binary classification models trained on case-control designs with lung cancer cases stratified by the
presence or absence of relevant comorbidities. Detailed demographic characteristics of the matched cohorts used in this analysis are provided in
Tables S4 and S5.
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designs, stratified by lung cancer stage. We observe that signals
monotonically increase with disease progression, indicating a
“dose−response” effect, where higher tumor progression
corresponds to stronger signals. This finding provides strong
evidence that the differential EMF signals are indeed tumor-
specific and in agreement with our previous FTIR spectro-
scopic examinations.27 The corresponding classification
performance is depicted in Figure 5(B), assessed through
cross-validation within the training set. This analysis reveals a
significant influence of the disease stage on classification
accuracy and the capacity of EMF to detect the disease. The
observed dose−response relationship here further underscores
the tumor-specific nature of the captured EMF signals.
A stage-wise comparison of EMF- and FTIR-based model

performance is detailed in Table S10. Notably, both methods
yield near-identical results regarding stage-wise ROC AUC
values and average spectrally resolved effect sizes across
wavenumbers that significantly contribute to class separation.
Impact of Physiological Comorbidities on Lung

Cancer Detection Efficiency. Cancers are commonly
accompanied by one or more chronic conditions (comorbid-
ity/multimorbidity) at the time of diagnosis, which can affect
its detection and prognosis.42 To evaluate the capacity of
infrared fingerprinting under physiologically realistic con-
ditions, we directly tested whether pre-existing chronic
conditions limit its functionality. Chronic obstructive pulmo-
nary disease (COPD), a chronic lung condition marked by
obstructed airflow and breathing difficulties, often coexists with
nonsmall cell lung cancer (NSCLC), particularly in smokers.43

Since molecular changes in blood plasma due to COPD could
impair lung cancer detection, we systematically examined its
impact on EMF-based detection models. Figure 6 presents the
influence of COPD and other comorbidities on these models.
The first 2 bar show ROC AUC values for matched case-
control data sets for cases stratified by COPD status. Cases
included in the two bars were matched by cancer stage to avoid
confounding factors related to disease progression. We
observed a difference in AUC values, indicating a more
efficient detection performance in populations without COPD
as a comorbidity. The third bar displays the ROC AUC value
for detecting COPD among cancer-free individuals, showing a
high mean AUC of 0.84, confirming COPD’s detectability of
COPD with our fingerprinting approach. The fourth bar shows
that EMF-based models can effectively differentiate between
lung cancer and COPD patients, achieving a mean AUC of
0.73. Beyond COPD, we further assessed whether type-2
diabetes or kidney disease could impact the detection of lung
cancer. The fifth and sixth bars of this plot show the
corresponding ROC AUC values for cases that are positive
and negative in type-2 diabetes mellitus, respectively, matched
by lung cancer stage. We found that type-2 diabetes did not
impact lung cancer detection, an important finding for
application as type-2 diabetes mellitus is a very common
condition. Kidney dysfunction commonly co-occurs with lung
cancer, so it is also important to evaluate its potential effect on
the capacity of EMF-based models to detect lung cancer.
Conversely to COPD, chronic kidney disease significantly
affected lung cancer detection models, potentially hindering
accurate lung cancer diagnosis. In addition to comorbidities,
we also tested the influence of smoking status on the lung
cancer detection efficiency. The last two bars of Figure 6
compare the resulting ROC AUCs when stratifying individuals
in terms of smoking status and show no significant difference.

While detecting, managing, and taking into account possible
comorbidities are crucial in medical test development, plasma-
based EMF grossly shows robust capabilities at the
heterogeneous group level, warranting consideration for in
vitro diagnostics, pending further clinical validation in future
independent populations and clinical studies.

■ DISCUSSION
EMF enables the comprehensive profiling of molecular
mixtures in human blood plasma. This study establishes the
technique as a promising candidate for an in vitro diagnostic
application through a large-scale case-control clinical study.
Focusing on cancer detection, we demonstrate how field-
resolved spectroscopy allows for phenotype inspection
independently of the nature of a phenotype or molecular
composition. Previously reported experiments on aqueous
solutions of organic molecules33 show an enhanced sensitivity
for EMF compared to conventional FTIR spectroscopy. The
demonstrated higher inherent sensitivity of EMF as compared
to conventional time-integrated spectroscopies, along with a
future extension of spectral coverage, holds promise for
significant improvement of the classification efficiencies
demonstrated here with first-generation EMF instrumentation.
At its current stage of development, EMF stands at par with
FTIR spectroscopy (see comparisons in Tables S9 and S10).
To robustly evaluate the reliability of the experimental

technique, we ensured that the human blood sample collection,
plasma processing, and preanalytical workflows adhered to
previously established standards,23 and processed the meas-
ured EMF signals as per a carefully designed standardization
procedure.39 We report the stability and reproducibility of our
approach over extended periods and larger-scale measurement
paradigms. The analysis of 1185 quality control samples and
blood plasma samples from 2533 different individuals
confirmed the robustness of the setup over seven months of
operation. Despite slight increases in measurement variability
over time, the overall fingerprinting variation consistently
remained lower than the biological variability between different
individuals. With this as a promising starting point, we expect
future versions of EMF instruments with improved stability
and noise characteristics44 to surpass the diagnostic perform-
ance of conventional fingerprinting.
We recorded infrared electric-field molecular fingerprints of

blood plasma samples from individuals with lung, prostate,
breast, or bladder cancers and trained a multiclass classifier
using the data. Our results reveal the ability of the approach to
distinguish patients with different cancer types from each
other, supporting the specificity of infrared fingerprints,
distinct for each of the studied cancers. We then analyzed
the fingerprints corresponding to each cancer type separately
and compared them to those from a matched control group to
train a binary classification model. We evaluated our model on
a held-out data set of blood samples from different individuals,
measured in a separate measurement campaign which was
started several weeks after the completion of the first campaign.
This approach allowed us to assess how the model performs on
data obtained under experimental conditions different from
those used during model training. Although a decrease in
performance was observed in comparison to cross-validation,
the AUC for lung cancer detection remained robust at 0.81.
The observed discrepancies, particularly in the capacity to
detect the other three cancer entities, highlight the need for
improving the reproducibility of EMF measurements and for
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further validation of this approach in additional patient
populations. Encouragingly, the detection of lung cancer
across different stages revealed a dose−response relationship.
In particular, we observed that stronger EMF signals are
associated with more advanced disease stages, consistent with
our previous FTIR findings.27

Given that cross-molecular fingerprint information remains
stable over several years23 and that proper longer-term sample
storage preserves infrared signals of blood plasma,25 infrared
fingerprinting carries the capacity to contribute to medical
diagnostics. In the context of lung cancer detection, while
abnormal kidney function impacted model accuracy, the
models effectively distinguished lung cancer patients from
matched individuals, despite common comorbidities such as
COPD and type-2 diabetes mellitus. This robustness further
highlights the clinical utility of the approach, either
complementary to golden-standard medical diagnostics or as
a novel tool for disease risk stratification.
Newly exploring the phenotype diagnostic capacities of

EMF, it is encouraging to observe the stability of the new
technology across extended experimental periods combined
with reproducibility in held-out test sets for three out of four
tested cancers, even at this early stage of technological
development. This is particularly significant given that the
current EMF instrument covers only a small fraction of the
molecular fingerprinting region of the entire electromagnetic
spectrum. Further technological advancements leading to EMF
instruments with a broader spectral coverage40,45,46 hold
promise for capturing even more molecular information.
Interferometric subtraction of EMF signals could enhance
detection sensitivity by suppressing the technical noise arising
from the impulsive excitation pulse.47 The rapid acquisition
capability of the current EMF instrument,37 which captures
thousands of EMF traces per second, also suggests potential for
applications beyond plasma fingerprinting, such as the real-
time tracking of reaction dynamics,48−50 in-line infrared
spectroscopic monitoring of chromatographic processes,51

and label-free flow cytometry.52

Another significant area of technological advancement is the
development of new laser sources. The advent of powerful and
widely tunable quantum cascade lasers (QCLs), which emit
radiation directly in the mid-infrared spectral region, has
profoundly impacted research in biomedical spectroscopy.53

With output power in the milliwatt range�orders of
magnitude higher than conventional thermal sources of
infrared radiation�QCLs as well as the ultrafast-laser-based
technique described in this work enable the probing of liquid
biological samples over larger sample thicknesses.54,55 The
application of new spectroscopic methods in combination with
machine learning to effectively analyze spatially resolved
infrared spectral images in histopathology has gained
significant attention56 due to their potential to aid the medical
diagnostic process. Recent studies have shown increasing
medical explainability by correlating infrared molecular
fingerprints with conventional clinical chemistry measure-
ments.25 Spectral changes in infrared fingerprints are being
understood better with the help of other omics approaches24

and additional preanalytical techniques that decompose the
molecular complexity of biological matrices.57 Other develop-
ments have focused on computationally modeling the infrared
absorption spectra of proteins58 as well as the energy transfer
mechanism behind electric-field molecular fingerprints.59

Together, these developments could push the boundaries of
infrared spectroscopy for biomedical applications.
In conclusion, the current findings provide compelling

evidence underscoring the potential of electric-field molecular
fingerprinting for minimally invasive disease detection. This
new technology, already performing on par with conventional
FTIR spectroscopy, achieves this through our technological
improvements like standardized sample handling and improved
instrument stability along with a new rapid-scanning technique
and effective data processing. Future enhancements, such as
broader spectral coverage,40,46 increased detection sensitivity
and specificity,44 multidimensional measurements,60 and
interferometric subtraction,47 could further boost biomedical
potential. Expanding clinical studies to larger cohorts, focusing
on early disease states and independent clinical testing, and
exploring various disease phenotypes and their combinations
will be crucial for developing a reliable diagnostic platform to
improve cancer outcomes.

■ METHODS
Clinical Study Participants.We conducted a multicentric,

observational study involving participants with four types of
cancer (lung, bladder, breast, and prostate), as well as
asymptomatic volunteers serving as control subjects. Informed
written consent was obtained from all participants under
research study protocol 17-182. The blood samples of lung
cancer patients were derived from the Asklepios biobank of
lung diseases under project 333-10 and study protocol 17-141.
Both research protocols were approved by the Ethics
Committee of the Ludwig-Maximilians-Universitaẗ (LMU) of
Munich. Our studies comply with all relevant ethical
regulations and were conducted according to Good Clinical
Practice (ICH-GCP) and the principles of the Declaration of
Helsinki. The clinical trial is registered (ID DRKS00013217)
with the German Clinical Trials Register (DRKS). Subject
recruitment and sample collection were conducted at the
following clinical centers of LMU University Hospital, Munich:
the Department of Medicine V, the Department of Urology,
and the Department of Obstetrics and Gynecology. Additional
study sites included the Asklepios Clinic in Gauting and the
Comprehensive Pneumology Centre (CPC) in Munich, both
in Germany. Analyses focused on case subjects with clinically
confirmed carcinoma of the lung, bladder, breast, or prostate
who had not yet received any cancer-related therapy and had
no history of other cancer occurrences. Healthy controls were
asymptomatic individuals with no history of cancer and no
cancer-related diseases and were not under any medical
treatment. Figure 2 shows a detailed breakdown of the study
participants. Cancer cases were compared to healthy
individuals matched for sex and age (Supplementary Tables).
In total, 4016 therapy-naive individuals, either cancer-free or
diagnosed with one of the four studied cancer types, were
recruited under the Lasers4Life study framework. After
statistical matching and removal of outliers, the final cohort
analyzed in this study consisted of 2533 participants.
Blood Sample Collection and Preparation. Blood

plasma samples were collected, processed, and stored following
established standard operating procedures.23,27 Blood draws
were performed using 21G Safety-Multifly needles (Sarstedt)
into 4.9 mL plasma tubes, centrifuged at 2000 × g for 10 min
at 20 °C, aliquoted, and frozen at −80 °C within 3 h of
collection. Before analysis, all samples were thawed, further
aliquoted, and refrozen at −80 °C to maintain a consistent

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.4c02164
ACS Cent. Sci. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/suppl/10.1021/acscentsci.4c02164/suppl_file/oc4c02164_si_001.pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.4c02164?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


number of freeze−thaw cycles. Before measurement, plasma
aliquots were thawed at room temperature, shaken for 30 s,
and centrifuged again at 2000 × g for 10 min. To avoid
systematic bias, samples were measured in a random order.
Quality control (QC) samples from pooled human plasma
(BioWest, Nuaille,́ France) were measured after every five
samples to monitor and track experimental errors (Supporting
Information Section 7). Additionally, dimethyl sulfone
(DMSO2, 10 mg mL−1) was used as a second QC sample.
Each measurement sequence comprised 25 samples, 6 QC
sera, and 1 DMSO2 sample, resulting in a total measurement
time of approximately 2 h.
EMF Measurements. Electric-field molecular fingerprint-

ing measurements were conducted using a field-sensitive
spectrometer described in a previous work.37 An automated
liquid sample handler and a commercial autosampler (Clade
GmbH, Germany) were employed for efficient sample delivery
into a flow-through cuvette and cuvette cleaning. Each plasma
sample measurement was preceded by a reference measure-
ment on pure water, followed by automatic cuvette cleaning to
prevent residue carryover. EMF traces from both reference and
sample measurements spanned an optical delay range of 6 ps,
corresponding to a spectral resolution of 2.8 cm−1, with a
measurement time of 40 s each. Including the time needed for
sample exchange and cuvette cleaning, the total time required
to measure a single plasma sample was approximately 3.5 min.
Preprocessing and Standardization of Electric-Field

Molecular Fingerprinting Measurements. The EMF
signals, acquired at a rate of 2800 traces per second, were
calibrated, interpolated to a common delay axis, and averaged
to obtain a single trace with the EMF signal as a function of
delay in femtoseconds for each 40-s-long measurement, similar
to the traces shown in Figure 1(B). The preprocessing steps
are described in detail in ref37. Each sample EMF signal is
accompanied by an EMF measurement of pure water, which is
used to standardize the measurements and cancel out
fluctuations in the intensity and phase of the laser pulses
from measurement to measurement. When carrying out EMF
measurements with a femtosecond excitation pulse, the
intensity and phase distribution of the excitation pulse affect
the waveform describing the coherent response of the sample.
We use a time-domain filter at 600 fs after the peak of the
excitation pulse, making the resulting signal nominally
excitation-independent and comparable to fingerprints meas-
ured with other devices, including widely prevalent FTIR
spectrometers. The standardization procedure has been
described in a previous work.39 The standardized fingerprints
constitute the input data sets for subsequent machine-learning-
based classification analyses.
Statistical Methods. Outlier Detection. After collecting

the entire data set, outliers were identified and removed using
the Local Outlier Factor (LOF) method, as implemented in
Scikit-Learn (v.1.1.3).61 LOF, which is based on k-nearest
neighbors, is well-suited for moderately high-dimensional data
and effectively eliminates samples exhibiting spectral anoma-
lies. This procedure led to the removal of 46 spectra, which
were excluded before the matched cohorts used in the study.
Statistical Matching. To achieve a covariate balance

between the case and control groups in the study design, we
employed optimal pair matching using the Mahalanobis
distance within propensity score calipers.62 This implementa-
tion was carried out in R (v. 3.5.1).

Machine Learning and ROC Curves. Classification models
were developed using Scikit-Learn (v.1.1.3),61 an open-source
machine learning framework in Python (v.3.9.13). Binary
classification models were trained using logistic regression.
Performance evaluation on the training data set was conducted
by using a nested cross-validation approach. Hyperparameter
optimization was performed through a 5-fold grid search cross-
validation nested within a repeated stratified 10-fold cross-
validation with five repetitions. The results are visualized
through ROC curves. The cross-validation outcomes are
reported as descriptive statistics, specifically the mean and
standard deviation of the resulting distribution of AUC values
along with mean ROC curves. Classification models were
trained and applied to the corresponding test sets based on the
four main training sets (one per cancer type). The perform-
ance was evaluated by using ROC curves.
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Trubetskov, M.; Karandusǒvsky, P.; Hofer, C.; Buberl, T.;
Amotchkina, T.; Högner, M.; et al. Dual-oscillator infrared electro-
optic sampling with attosecond precision. Optica 2024, 11 (5), 726−
735.
(38) Griffiths, P. R. Fourier transform infrared spectrometry. Science
1983, 222 (4621), 297−302.
(39) Huber, M.; Trubetskov, M.; Schweinberger, W.; Jacob, P.;
Zigman, M.; Krausz, F.; Pupeza, I. Standardized electric-field-resolved
molecular fingerprinting. Anal. Chem. 2024, 96 (32), 13110−13119.
(40) Steinleitner, P.; Nagl, N.; Kowalczyk, M.; Zhang, J.; Pervak, V.;
Hofer, C.; Hudzikowski, A.; Sotor, J.; Weigel, A.; Krausz, F.; et al.
Single-cycle infrared waveform control. Nat. Photonics 2022, 16 (7),
512−518.
(41) Nicholson, A. G.; Tsao, M. S.; Beasley, M. B.; Borczuk, A. C.;
Brambilla, E.; Cooper, W. A.; Dacic, S.; Jain, D.; Kerr, K. M.;
Lantuejoul, S.; et al. The 2021 who classification of lung tumors:
impact of advances since 2015. Journal of Thoracic Oncology 2022, 17
(3), 362−387.
(42) Renzi, C.; Kaushal, A.; Emery, J.; Hamilton, W.; Neal, R. D.;
Rachet, B.; Rubin, G.; Singh, H.; Walter, F. M.; de Wit, N. J.; et al.
Comorbid chronic diseases and cancer diagnosis: disease-specific
effects and underlying mechanisms. Nature reviews clinical oncology
2019, 16 (12), 746−761.
(43) Young, R. P.; Hopkins, R. J. Chronic obstructive pulmonary
disease (copd) and lung cancer screening. Translational lung cancer
research 2018, 7 (3), 347.
(44) Kowalczyk, M.; Nagl, N.; Steinleitner, P.; Karpowicz, N.;
Pervak, V.; Głuszek, A.; Hudzikowski, A.; Krausz, F.; Mak, K. F.;

Weigel, A. Ultra-cep-stable single-cycle pulses at 2.2μm. Optica 2023,
10 (6), 801−811.
(45) Butler, T. P.; Gerz, D.; Hofer, C.; Xu, J.; Gaida, C.;
Heuermann, T.; Gebhardt, M.; Vamos, L.; Schweinberger, W.;
Gessner, J. A.; Siefke, T.; Heusinger, M.; Zeitner, U.; Apolonski, A.;
Karpowicz, N.; Limpert, J.; Krausz, F.; Pupeza, I. Watt-scale 50-mhz
source of single-cycle waveform-stable pulses in the molecular
fingerprint region. Opt. Lett. 2019, 44, 1730−1733.
(46) Kassab, H.; Gröbmeyer, S.; Schweinberger, W.; Hofer, C.;
Steinleitner, P.; Högner, M.; Amotchkina, T.; Gerz, D.; Knorr, M.;
Huber, R.; Karpowicz, N.; Pupeza, I. In-line synthesis of multi-octave
phase-stable infrared light. Opt. Express 2023, 31, 24862−24874.
(47) Buberl, T.; Sulzer, P.; Leitenstorfer, A.; Krausz, F.; Pupeza, I.
Broadband interferometric subtraction of optical fields. Opt. Express
2019, 27, 2432−2443.
(48) Popp, A.; Scheerer, D.; Heck, B.; Hauser, K. Biomolecular
dynamics studied with ir-spectroscopy using quantum cascade lasers
combined with nanosecond perturbation techniques. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 181, 192−
199.
(49) Klocke, J. L.; Mangold, M.; Allmendinger, P.; Hugi, A.; Geiser,
M.; Jouy, P.; Faist, J.; Kottke, T. Single-shot sub-microsecond mid-
infrared spectroscopy on protein reactions with quantum cascade laser
frequency combs. Analytical chemistry 2018, 90 (17), 10494−10500.
(50) Hinkov, B.; Pilat, F.; Lux, L.; Souza, P. L.; David, M.;
Schwaighofer, A.; Ristanic,́ D.; Schwarz, B.; Detz, H.; Andrews, A. M.;
et al. A mid-infrared lab-on-a-chip for dynamic reaction monitoring.
Nat. Commun. 2022, 13 (1), 4753.
(51) Akhgar, C. K.; Ebner, J.; Spadiut, O.; Schwaighofer, A.; Lendl,
B. Qcl-ir spectroscopy for in-line monitoring of proteins from
preparative ion-exchange chromatography. Anal. Chem. 2022, 94
(14), 5583−5590.
(52) Gala de Pablo, J.; Lindley, M.; Hiramatsu, K.; Goda, K. High-
throughput raman flow cytometry and beyond. Acc. Chem. Res. 2021,
54 (9), 2132−2143.
(53) Schwaighofer, A.; Brandstetter, M.; Lendl, B. Quantum cascade
lasers (qcls) in biomedical spectroscopy. Chem. Soc. Rev. 2017, 46
(19), 5903−5924.
(54) Brandstetter, M.; Genner, A.; Anic, K.; Lendl, B. Tunable
external cavity quantum cascade laser for the simultaneous
determination of glucose and lactate in aqueous phase. Analyst
2010, 135 (12), 3260−3265.
(55) Huber, M.; Trubetskov, M.; Hussain, S. A.; Schweinberger, W.;
Hofer, C.; Pupeza, I. Optimum sample thickness for trace analyte
detection with field-resolved infrared spectroscopy. Analytical
chemistry 2020, 92 (11), 7508−7514.
(56) Bhargava, R. Digital histopathology by infrared spectroscopic
imaging. Annual Review of Analytical Chemistry 2023, 16 (1), 205−
230.
(57) Voronina, L.; Fleischmann, F.; Simunovic, J.; Ludwig, C.;
Novokmet, M.; Zigman, M. Probing blood plasma protein
glycosylation with infrared spectroscopy. Anal. Chem. 2024, 96 (7),
2830−2839.
(58) Ye, S.; Zhong, K.; Zhang, J.; Hu, W.; Hirst, J. D.; Zhang, G.;
Mukamel, S.; Jiang, J. A machine learning protocol for predicting
protein infrared spectra. J. Am. Chem. Soc. 2020, 142 (45), 19071−
19077.
(59) Peschel, M. T.; Högner, M.; Buberl, T.; Keefer, D.; de Vivie-
Riedle, R.; Pupeza, I. Sub-optical-cycle light-matter energy transfer in
molecular vibrational spectroscopy. Nat. Commun. 2022, 13 (1),
5897.
(60) Hunt, N. T. Using 2d-ir spectroscopy to measure the structure,
dynamics, and intermolecular interactions of proteins in h2o. Acc.
Chem. Res. 2024, 57 (5), 685−692.
(61) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine learning in python. Journal of
Machine Learning Research 2011, 12, 2825−2830.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.4c02164
ACS Cent. Sci. XXXX, XXX, XXX−XXX

M

https://doi.org/10.7554/eLife.68758
https://doi.org/10.7554/eLife.68758
https://doi.org/10.1080/05704928.2021.1946076
https://doi.org/10.1080/05704928.2021.1946076
https://doi.org/10.1002/jbio.201300149
https://doi.org/10.1002/jbio.201300149
https://doi.org/10.1186/s12885-021-09017-7
https://doi.org/10.1186/s12885-021-09017-7
https://doi.org/10.1038/s41416-023-02423-7
https://doi.org/10.1038/s41416-023-02423-7
https://doi.org/10.1186/s12916-025-03924-3
https://doi.org/10.1186/s12916-025-03924-3
https://doi.org/10.1038/s41586-019-1850-7
https://doi.org/10.1038/s41586-019-1850-7
https://doi.org/10.1021/acs.analchem.8b01632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b01632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b01632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b01632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1364/OE.18.007929
https://doi.org/10.1364/OE.18.007929
https://doi.org/10.1126/sciadv.aaw8794
https://doi.org/10.1126/sciadv.aaw8794
https://doi.org/10.1364/OPTICA.515708
https://doi.org/10.1364/OPTICA.515708
https://doi.org/10.1126/science.6623077
https://doi.org/10.1021/acs.analchem.4c01745?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.4c01745?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41566-022-01001-2
https://doi.org/10.1016/j.jtho.2021.11.003
https://doi.org/10.1016/j.jtho.2021.11.003
https://doi.org/10.1038/s41571-019-0249-6
https://doi.org/10.1038/s41571-019-0249-6
https://doi.org/10.21037/tlcr.2018.05.04
https://doi.org/10.21037/tlcr.2018.05.04
https://doi.org/10.1364/OPTICA.481673
https://doi.org/10.1364/OL.44.001730
https://doi.org/10.1364/OL.44.001730
https://doi.org/10.1364/OL.44.001730
https://doi.org/10.1364/OE.493887
https://doi.org/10.1364/OE.493887
https://doi.org/10.1364/OE.27.002432
https://doi.org/10.1016/j.saa.2017.03.053
https://doi.org/10.1016/j.saa.2017.03.053
https://doi.org/10.1016/j.saa.2017.03.053
https://doi.org/10.1021/acs.analchem.8b02531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b02531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b02531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-022-32417-7
https://doi.org/10.1021/acs.analchem.1c05191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.1c05191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.1c00001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.1c00001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C7CS00403F
https://doi.org/10.1039/C7CS00403F
https://doi.org/10.1039/c0an00532k
https://doi.org/10.1039/c0an00532k
https://doi.org/10.1039/c0an00532k
https://doi.org/10.1021/acs.analchem.9b05744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b05744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-anchem-101422-090956
https://doi.org/10.1146/annurev-anchem-101422-090956
https://doi.org/10.1021/acs.analchem.3c03589?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.3c03589?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.0c06530?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.0c06530?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-022-33477-5
https://doi.org/10.1038/s41467-022-33477-5
https://doi.org/10.1021/acs.accounts.3c00682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.3c00682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.4c02164?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(62) Rosenbaum, P. R. Design of Observational Studies, Vol. 10;
Springer, 2010.

ACS Central Science http://pubs.acs.org/journal/acscii Article

https://doi.org/10.1021/acscentsci.4c02164
ACS Cent. Sci. XXXX, XXX, XXX−XXX

N

http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.4c02164?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

